ST. PATRICK'S DAY MESSAGE ON A CALCULATOR

In a reflection in the February 2009
Mathematics Teacher (vol. 102, no. 6, pp. 404-5), I provided some steps for creating a mathematical valentine using a graphing calculator. The many positive responses I received regarding that activity have led me to follow it up with a St. Patrick's Day card (see fig. 1 [Ebert]), which readers may copy and use in their upper-level mathematics classes. The polar equations in the card have been passed on to me by a number of other creative mathematics teachers.

Although students may create the card just for fun, many mathematical concepts can be derived from this activity. Have students explore the equations used to make the clover shape; then have them fold the card vertically and horizontally so that the clover design appears on the front.

I encourage you to create a set of exploratory questions to go along with this activity. Happy St. Patrick's Day!

David Ebert
dde@oregon.k12.wi.us Oregon High School
Oregon, WI 53575

0For a PDF version of the instructions for making this card, go to www.nctm.org.

Fig. 1 (Ebert)

A VOLUME GENERALIZATION
In MT September 2008 (vol. 102, no. 2, pp. 86-87), the reflection "Egyptian Geometry" deduced the volume formula for a frustum of a square pyramid as

$$
V=\left(\frac{h}{3}\right)\left(B^{2}+B b+b^{2}\right)
$$

where h is the altitude and B and b are the lengths of the side of the lower square base and the side of the upper square base, respectively. Actually, we can provide a general volume formula for polygonal prisms, polygonal pyramids, cylinders, cones, frustums of polygonal pyramids, and frustums of cones.

Consider a frustum of an n-sided polygonal pyramid $A_{1} A_{2} A_{3} \ldots A_{n}-B_{1} B_{2} B_{3} \ldots B_{n}$ (see fig. $1[\mathbf{T u}]$). Assume that the original pyramid is $Z-B_{1} B_{2} B_{3} \ldots B_{n}$ and that $\overline{Z H}$ is the altitude that intersects the cross-section plane $A_{1} A_{2} A_{3} \ldots A_{n}$ at H_{1}. Since plane $A_{1} A_{2} A_{3} \ldots A_{n}| |$ plane $B_{1} B_{2} B_{3} \ldots B_{n}, \overline{Z H}$ is perpendicular to both planes $A_{1} A_{2} A_{3} \ldots A_{n}$ and $B_{1} B_{2} B_{3} \ldots B_{n}$, implying that $\overline{Z H_{1}}$ is the altitude of the n-sided polygonal pyramid $Z-A_{1} A_{2} A_{3} \ldots A_{n}$ and $\overline{H_{1} H}$ is the altitude of the frustum of n-sided polygonal pyra$\operatorname{mid} A_{1} A_{2} A_{3} \ldots A_{n}-B_{1} B_{2} B_{3} \ldots B_{n}$.

It can be shown that the triangles $Z B_{1} H$ and $Z A_{1} H_{1}$ are similar. If we let $Z H_{1}=u$ and $H H_{1}=h$, then

$$
\frac{Z B_{1}}{Z A_{1}}=\frac{Z H}{Z H_{1}}=\frac{u+h}{u}
$$

By a similar argument, triangles $Z B_{1} B_{2}$ and $Z A_{1} A_{2}$ are similar, producing the proportion

$$
\frac{B_{1} B_{2}}{A_{1} A_{2}}=\frac{Z B_{1}}{Z A_{1}}=\frac{u+h}{u}
$$

By the same reasoning, we can obtain

$$
\frac{B_{1} B_{2}}{A_{1} A_{2}}=\frac{B_{2} B_{3}}{A_{2} A_{3}}=\cdots=\frac{B_{n} B_{1}}{A_{n} A_{1}}=\frac{u+h}{u}
$$

